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Abstract—A nonlinear continuous-discrete system subjected to bounded exogenous distur-
bances is considered. The method of matrix comparison systems and the technique of dif-
ferential-difference linear matrix inequalities are used to solve the following problems: state
estimation via a bounding ellipsoid and the attenuation of initial deviations and uncertain
disturbances via a state-feedback loop with discrete measurements. A discrete control design
method is proposed to attenuate, on a finite horizon, the initial deviations and uncertain dis-
turbances bounded by the L∞ norm.
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1. INTRODUCTION

Ordinary differential-difference equations have long been a topic of research [1–6] in connection
with studying partial differential equations and delay equations. As noted in the literature (see [3, 7]
and references therein), many complex engineering systems described by partial differential or delay
equations can be approximated by or written as simpler models in the form of differential-difference
equations. Interrelated differential-difference equations are also an important class because they
represent models of systems with digital computation [3] or discrete data received over a commu-
nication network [1] to control continuous-time plants. In addition, they arise in the modeling of
production processes, road traffic, and biological processes in nature that evolve continuously in
time and are controlled by discrete events changing their parameters or state [3].

Differential-difference equations belong to the class of hybrid systems since they describe het-
erogeneous interacting processes occurring in continuous and discrete time. In recent years, much
attention has been paid to the stability analysis of systems with sampling (sampled-data systems),
which can also be represented by differential-difference equations; see the overview [8] and references
therein. This range of problems also includes control of a continuous-time system with a discrete
controller or control of a networked system in which many components have continuous-time dy-
namics while others evolve only at discrete time instants. The existing approaches to the stability
analysis and design of sampled-data systems based on the technique of linear matrix inequalities
(LMIs) were considered in [8]. As underlined by the authors, despite significant advances in the
field, the problems of obtaining constructive stability analysis methods remain open even in the
case of linear systems.
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192 MALIKOV

When designing discrete controllers for continuous-time systems, researchers strive to ensure
stability [14, 15] or optimal performance in terms of the H2 or H∞ criteria [16–18]. For the class
of linear continuous-time systems with aperiodic sampling, a method for constructing a stabiliz-
ing dynamic output-feedback controller was proposed in [14]. An observer-based discrete robust
controller was designed from stability conditions established using a vector Lyapunov function for
2D systems [15]. Bellman’s optimality principle was adopted to obtain dynamic full-order H2-
and H∞-optimal output-feedback controllers with periodic data sampling for linear continuous
time-invariant systems [18]. In particular, stability conditions and performance indices for linear
systems with discrete controllers were formulated in terms of time-dependent LMIs, which can be
solved numerically. Continuous-time systems with Lipschitz nonlinearities, uncertain disturbances,
and discrete control were considered in [9]. State estimation methods with bounding ellipsoids
for processes with initial data from a given ellipsoid were proposed. Boundedness conditions on a
finite horizon were derived in the form of solvability of a constrained optimization problem with
differential-difference LMIs. With the piecewise linear approximation of the solution of differen-
tial LMIs, the problems of state estimation and discrete control design were reduced to a set of
constrained optimization problems with differential LMIs, and semidefinite programming methods
were used to solve them numerically. The approach developed in [9] was applied in [10–13] for state
estimation and control design of nonlinear systems with discrete measurements.

In all these works on stability analysis, performance indices, and discrete control design for
continuous-time systems, the discrete part determining the control change has a partial form and
is described, as a rule, by a linear difference equation with constant coefficients. Exogenous distur-
bances are neglected, and the impact of the discrete subsystem on the continuous one is implemented
only through the control variable. A new stability condition for coupled differential-functional
equations was proposed in [7]. A Lyapunov–Krasovskii functional was constructed for the special
case of linear differential equations with extra interaction (not only through the control variable).
The stability condition was represented in terms of LMIs, convenient for numerical computation.
As emphasized therein, the problem has other difficulties to overcome: stability analysis and con-
trol design require using mixed continuous- and discrete-time methods due to the hybrid nature of
the entire system. In addition, the controller is usually obtained as a discontinuous function at the
sampling points of the discrete subsystem. Finally, note alternative approaches to the stabilization
of discrete-continuous systems that have appeared recently [19–23].

In this paper, we present state estimation, in the form of a bounding ellipsoid, as well as discrete
control design methods for the class of continuous-discrete systems with Lipschitz nonlinearities
and uncertain norm-bounded disturbances. Originally proposed in [24] and further developed
in [25, 26], the approach involving a quadratic Lyapunov function with time-varying coefficients
and differential LMIs is applied to estimate the state and design a discrete controller for the above
class of systems. As a result, both problems (state estimation on a finite horizon and discrete
control design) are reduced to a set of constrained optimization problems with LMIs obtained by
the piecewise linear approximation of the solution of the differential LMIs [27]. The results are
illustrated by an example.

2. CONTINUOUS-DISCRETE SYSTEM

Consider a system consisting of continuous and discrete subsystems interacting with each other:

ẋ1(t) = A1x1(t) + Φ1ϕ1(t, x1(t)) +A12x2(tk) +D1w1(t),

x2(tk+1) = A2x2(tk) + Φ2ϕ2(tk, x2(tk)) +A21x1(tk) +D2w2(tk),
(1)

where x1 ∈ Rn1 and x2 ∈ Rn2 are the state vectors of the continuous and discrete subsystems,
respectively, x2(t) = x2(tk) for t ∈ [tk, tk+1), tk ∈ Θ = {tk, tk = tk−1 + h, k = 1, . . . , N}; h is a dis-
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STATE ESTIMATION AND STABILIZATION OF CONTINUOUS-DISCRETE SYSTEMS 193

crete time step (sampling period); w1(t) ∈ W1 ⊂ Rr1 and w2(t) ∈ W2 ⊂ Rr2 are the vectors of
uncertain exogenous disturbances; Ai ∈ Rni×ni , A12 ∈ Rn1×n2 , A21 ∈ Rn2×n1 , Di ∈ Rni×ri , and
Φi ∈ Rni×qi are known matrices with constant elements; t ∈ T , T = [t0, tN ], where t0 and tN are
initial and final time instants.

The nonlinear vector functions ϕi(t, xi) are continuous, bounded, and satisfy the condition

‖ϕi(t, xi)‖2 � μi ‖Cfixi‖2 ∀t ∈ T, xi ∈ Rni , i = 1, 2, (2)

where Cfi ∈ Rqi×ni are known matrices with constant elements. From this point onwards,
‖·‖ denotes the Euclidean vector norm and μi > 0, i = 1, 2, are known constants.

The uncertain disturbances are continuous bounded functions at each time instant:

Wi =
{
wi(t) ∈ Rri : ‖wi(t)‖2 � 1 ∀t ∈ T

}
, i = 1, 2. (3)

3. STATE ESTIMATION

Assume that at the initial time instant, the states xi(t0) = xi0 of the continuous and discrete
subsystems belong to given ellipsoids

E(Qi0) =
{
xi ∈ Rni : xTi Q

−1
i0 xi � 1

}
, (4)

where Qi0(i = 1, 2) are given positive definite matrices.

Let x(t) = (xT1 (t), x
T
2 (t) = xT2 (tk))

T denote the state vector of the continuous-discrete system.

We introduce the following notion.

Definition 1. An ellipsoid E(Qx(t)) = {x ∈ Rn : xTQ−1
x (t)x � 1} is said to be bounding for the

processes x(t, t0, x0) of the continuous-discrete system (1) evolving from an initial ellipsoid
E(Qx0 = diag(Q10, Q20)) if x(t, t0, x0) ∈ E(Qx(t)) for all t ∈ [t0, tN ], all nonlinearities from (2),
and all disturbances from (3).

Problem 1. On the finite horizon [t0, tN ] under consideration, it is required to find the matrix
Qx(t) of a bounding ellipsoid E(Qx(t)) for the set of processes of the original system (1) with initial
data from (4), all nonlinearities from (2), and all disturbances from (3).

Note that a bounding ellipsoid will be an upper estimate of the reachability domain of the
system.

To solve this problem, we introduce an augmented state vector of the form z(t) = (xT1 (t), x
T
2 (t) =

xT2 (tk), x
T
3 (t) = xT1 (tk))

T : on continuity intervals [tk, tk+h), its components x1(t) change according
to equation (1) while x2(t) and x3(t) remain invariable. At discrete time instants tk ∈ Θ, the com-
ponents x2(t), x3(t) change jump-wise according to equation (2) and the relation x3(tk) = x1(tk).
Now the original continuous-discrete system (1) can be represented as the continuous system (5)
with the impulses (6):

ż(t) = Az1z +Φz1ϕ(t, z(t)) +Dz1w(t), t �= tk, (5)

z(tk+1) = Az2z(tk) + Φz2ϕ(tk, z(tk)) +Dz2w(tk), tk ∈ Θ, (6)

where

w(t) =
(
wT
1 (t), w

T
2 (t)

)T
, Az1 =

⎡⎢⎣ A1 0 A12

0 0 0
0 0 0

⎤⎥⎦, Dz1 =

⎡⎢⎣ D1

0
0

⎤⎥⎦,
Φz1 =

⎡⎢⎣ Φ1

0
0

⎤⎥⎦, Az2 =

⎡⎢⎣ I 0 0
0 A2 A21

I 0 0

⎤⎥⎦, Dz2 =

⎡⎢⎣ 0
D2

0

⎤⎥⎦, Φz2 =

⎡⎢⎣ 0
Φ2

0

⎤⎥⎦.
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In addition,

z(t0) = z0 = (xT10, x
T
20, x

T
10)

T ∈ E(Q0), Q0 = diag(Q10, Q20, Q10),

x1(t) = C1z(t), x2(t) = C2z(t),

C1 = ( In1 0n1×(n2+n1) ), C2 = ( 0n2×n1 In2 0n2×n1 ),

where Ini (i = 1, 2) is an identity matrix of dimensions (ni × ni).

First, we will find the matrix Q(t) of a bounding ellipsoid for the states of the augmented
system (5), (6). Then the matrix Qx(t) is given by Qx = C12Q(t)CT

12, where C12 = (CT
1 , C

T
2 )

T.

On the continuity intervals [tk, tk+1) (k = 0, 1, . . . , N−1), the matrix Q(t) of a bounding ellipsoid
E(Q(t)) for the states of the augmented system will be obtained using Theorems 1 and 2 of [25],
provided below in a unified formulation under the constraint imposed on nonlinearities.

Theorem 1 (see [25]). An ellipsoid E(Q(t)) is bounding for the trajectories of system (5) evolving
from an initial ellipsoid E(Qk) if one of the following conditions holds for t ∈ [tk, tk+1), β1 > 0,
and α1 > 0:

1) There exists a solution Q(t) = Q(t, tk, Qk) > 0 of the differential matrix equation

dQ(t)/dt = Az1Q+QAT
z1 + α1Q+

1

α1
Dz1D

T
z1 + β1Φz1Φ

T
z1 +

μ1

β1
QCT

1 C
T
f1Cf1C1Q. (7)

2) For a fixed α1 > 0, there exists a solution Q(t) = Q(t, tk, Qk) > 0 of the differential LMI⎡⎢⎢⎢⎢⎣
−dQ(t)/dt +Az1Q+QAT

z1 + α1Q+ β1Φz1Φ
T
z1 Dz1 QCT

1 C
T
f1

DT
z1 −α1I 0

Cf1C1Q 0 −β1
μ1

I

⎤⎥⎥⎥⎥⎦ � 0. (8)

Here, Q(t0) = Q0.

The proof of Theorem 1 was provided in [25].

Also, the following analytical expressions for the free parameters β1 and α1 were derived in [9]:

β1(Q(t)) = +

√√√√μ1trace(Q(t)CT
1 C

T
f1Cf1C1Q(t))

trace(Φz1Φ
T
z1)

,

α1(Q(t)) =

√
trace(Dz1DT

z1)

trace(Q(t))
.

They yield locally optimal estimates by the trace criterion of the matrix Q(t) = Q(t, tk, Qk), which
is the sum of the semi-axis of the bounding ellipsoid.

For each fixed α1 and variable β1, the procedure for calculating the matrix Q(t) of a bounding
ellipsoid for the states of (5) using the differential LMI (8) is reduced, via sampling, to a set
of optimization problems trace(Q(tk)) → minQ(tk),β1(tk) with LMI constraints. This procedure is

presented at the end of the current section.

At time instants tk+1, k = 0, . . . , N − 1, the behavior of the system is described by the difference
equation (6). In this case, Theorem 1 of [26] will be used to calculate the matrix Q(tk+1) of a
bounding ellipsoid for the states of the augmented system at discrete time instants tk+1. Here, we
present it as applied to the difference equation (6).
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STATE ESTIMATION AND STABILIZATION OF CONTINUOUS-DISCRETE SYSTEMS 195

Theorem 2 (see [26]). An ellipsoid E(Q(tk+1)) is bounding for the system states at a time instant
tk+1 under z(tk) ∈ E(Q(tk)) if one of the following conditions holds for 0 < α2 < 1:

1) There exists a solution Q(tk+1) > 0 of the difference matrix equation

Q(tk+1) = Az2Q(tk)

[
α2Q(tk)− μ2

β2
Q(tk)C

T
2 C

T
f2Cf2C2Q(tk)

]−1

Q(tk)A
T
z2

+
1

1− α2
Dz2D

T
z2 + β2Φz2Φ

T
z2.

(9)

2) There exists a solution Q(tk+1) > 0 of the difference LMI⎡⎢⎢⎢⎢⎢⎢⎢⎣

Q(tk+1)− β2Φz2Φ
T
z2 Az2Q(tk) Dz2 0

Q(tk)A
T
z2 α2Q(tk) 0 Q(tk)C

T
2 C

T
f2

DT
z2 0 (1− α2)I 0

0 Cf2C2Q(tk) 0
β2
μ2

I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
� 0. (10)

The proof of this theorem for the discrete-time system (6) with nonlinearities from (2) and
uncertain disturbances from (3) was presented in [26].

Assume that the discrete time varies with a constant step tk+1 − tk = h = const, k = 1, . . . , N.
Note that the case of varying the discrete time with a non-fixed known step hk can be considered by
analogy. The case where all steps hk are unknown and vary within a given range, hk ∈ [hmin, hmax],
requires separate analysis.

Well, we have the following result for the continuous-discrete system with a constant step of the
discrete time.

Theorem 3. An ellipsoid E(Q(t)), where Q(t) = Q(t, t0, Q0) is a solution of the matrix
system of differential-difference equations (7), (9) or the constrained optimization problem
trace(Q(t, t0, Q0)) → min subject to the differential LMI (8) and the difference LMI (10), is bound-
ing for the states of system (5), (6) and the states of the original continuous-discrete system (1)
for all nonlinearities from (2) and all disturbances from (3).

The proof is based on Theorem 1, sequentially applied on the continuity intervals [tk, tk+1)
(k = 0, 1, . . . , N − 1), to obtain the matrix Q(t, tk, Q(tk)) > 0 of a bounding ellipsoid for the state
z(t, tk, z(tk)) of system (5), (6) with initial data from the ellipsoid with the matrix Q(tk) for all
nonlinearities from (2) and all disturbances from (3), and Theorem 2, sequentially applied at the
points tk+1, (k = 0, 1, . . . , N − 1), to obtain the matrix Q(tk+1) > 0 of a bounding ellipsoid for the
state z(tk+1, tk, z(tk)) of system (5), (6) at a time instant tk+1 under the condition z(tk) ∈ E(Q(tk)).

Thus, under a periodic change of discrete time, the state of system (5), (6) with initial data
from the ellipsoid E(Q0) will be bounded by an ellipsoid with the matrix function Q(t, t0, Q0)
representing the solution of the matrix comparison system (7) with the impulses (9) or the con-
strained optimization problem trace(Q(t, t0, Q0)) → min subject to the differential LMI (8) and
the difference LMI (10) for t ∈ T . In this case, the matrix Qx(t, t0, Q0) is given by Qx(t, t0, Q0) =
C12Q(t, t0, Q0)C

T
12, where C12 = (CT

1 , C
T
2 )

T.

When numerically solving the constrained optimization problem with the differential LMI (8),
sampling is performed on the time interval [t0, tN ] [27]. The derivative dQ(t)/dt on the intervals
[tk, tk+1) is supposed to be constant, dQ(t)/dt = Z(tk), where tk = t0 + kh, k = 1, . . . , N, and N is
the integer part of the value (tN − t0)/h. Then, for t ∈ [tk, tk+1), the matrix Q(t) is given by

Q(t) = Q(tk) + (t− tk)Z(tk), (11)
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196 MALIKOV

and Q(t0) = Q0. The matrix Q(t) will satisfy the inequality Q(t) > 0 and the differential LMI (8)
for all t ∈ [tk, tk+1) iff it satisfies them at the two extreme points tk and tk + h. In other words, for
each k = 0, . . . , N − 1, the following inequalities must hold simultaneously [27]:

Q(tk) > 0, Q(tk + h) > 0, (12)⎡⎢⎢⎢⎣
−Z(tk) + F (Q(tk)) + β1Φz1Φ

T
z1 Dz1 Q(tk)C

T
1 C

T
f1

DT
z1 −α1I 0

Cf1C1Q(tk) 0 −β1
μ1

I

⎤⎥⎥⎥⎦ � 0, (13)

⎡⎢⎢⎢⎣
−Z(tk) + F (Q(tk + h)) + β1Φz1Φ

T
z1 Dz1 Q(tk + h)CT

1 C
T
f1

DT
z1 −α1I 0

Cf1C1Q(tk + h) 0 −β1
μ1

I

⎤⎥⎥⎥⎦ � 0, (14)

where Q(tk + h) = Q(tk) + hZ(tk) = Q(tk+1 − 0) and F (G) = Az1G+GAT
z1 + α1G.

After the linear approximation (11) of the solution of the differential LMI (8), the matrix
Q(t) > 0 of a bounding ellipsoid for the system states is found by sequentially solving the set of con-
strained optimization problems trace(Q(tk+1))→minQ(tk+1)>0,β1(tk+1)>0 subject to the LMIs (10),

(12)–(14) for k = 0, . . . , N − 1. At the first iteration (k = 0), for a matrix Q(t0) = Q0, the ma-
trices Q(t0 + h) and Q(t1) with minimal trace are calculated by solving the above optimization
problem with the LMI constraints. These matrices determine the matrix of a bounding ellipsoid
for the states of system (5), (6) on the interval [t0, t1]. Then, for k = 1, . . . , N − 1, the matrices
Q(tk + h) and Q(tk+1) are calculated from the matrix Q(tk). These matrices determine the matrix
of a bounding ellipsoid for the states of system (5), (6) on the subsequent intervals [tk, tk+1].

Note that at each iteration, semidefinite programming tools (CVX, Sedumi, Yalmip, etc.) can
be used for numerical solution of optimization problems with LMI constraints.

4. DISCRETE CONTROL DESIGN TO ATTENUATE THE INITIAL DEVIATIONS
AND UNCERTAIN DISTURBANCES OF THE CONTINUOUS-DISCRETE SYSTEM

Consider the continuous-discrete system (1) with discrete control:

ẋ1(t) =A1x1(t) +B1u(tk) + Φ1ϕ1(t, x1(t)) +A12x2(tk) +D1w1(t),

x2(tk+1) =A2x2(tk)+B2u(tk)+Φ2ϕ2(tk, x2(tk))+A21x1(tk)+D2w2(tk).
(15)

Problem 2. It is required to find a state-feedback controller with available discrete measurements
at time instants tk, k = 0, 1, . . . , N − 1, that stabilizes the closed-loop system and attenuates initial
deviations and exogenous disturbances in the sense of the minimal bounding ellipsoid for the states
of the continuous-discrete system.

For each subsystem, the state-feedback controller is based on the state of the entire system at
time instants tk :

ui(t) = Ki1(tk)x1(tk) +Ki2(tk)x2(tk), t ∈ [tk, tk+1), i = 1, 2, (16)

where Kij(tk)− (mi × nj), i = 1, 2, j = 1, 2, are the gain matrices of the discrete controllers and
k = 0, 1, . . . , N − 1.

The controller ui(t) must satisfy the constraint

ui(t) ∈
{
ui : u

T
i U

−1
i ui � 1

}
, t ∈ T, (17)

where Ui is a given symmetric positive definite matrix of dimensions (mi ×mi) (i = 1, 2).
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We write system (15) with the discrete controller (16) as

ż(t) = Az1z +Φz1ϕ1(t, z(t)) +Dz1w(t), t �= tk, (18)

z(tk+1) = Az2z(tk) + Φz2ϕ2(tk, z(tk)) +Dz2w(tk), tk ∈ Θ, (19)

where z(t) = (xT1 (t), x
T
2 (tk), x

T
1 (tk), u

T(tk))
T is the state vector of dimension n = n1+n2+n1+m,

u(tk) = (uT1 (tk), u
T
2 (tk))

T is the control vector of dimension m = m1 +m2, t ∈ [tk, tk+1), and

Az1 =

⎡⎢⎢⎢⎢⎢⎣
A1 A12 0 B1

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦, Az2 =

⎡⎢⎢⎢⎢⎢⎣
I 0 0 0
0 A2 A21 B2

I 0 0 0
0 K12 K11 0
0 K22 K21 0

⎤⎥⎥⎥⎥⎥⎦, Φz1 =

⎡⎢⎢⎢⎢⎢⎣
Φ1

0
0
0
0

⎤⎥⎥⎥⎥⎥⎦, Dz1 =

⎡⎢⎢⎢⎢⎢⎣
D1

0
0
0
0

⎤⎥⎥⎥⎥⎥⎦,

Φz2 =

⎡⎢⎢⎢⎢⎢⎣
0
Φ2

0
0
0

⎤⎥⎥⎥⎥⎥⎦, Dz2 =

⎡⎢⎢⎢⎢⎢⎣
0
D2

0
0
0

⎤⎥⎥⎥⎥⎥⎦, K =

[
K12(tk) K11(tk)
K22(tk) K21(tk)

]
.

In view of the numerical solution method for the differential LMI (8) (Section 3), the control
design problem for system (18), (19) reduces to a constrained optimization problem with difference
LMIs. In this problem, the criterion is the trace of the matrix Q(tk), determining the size of a
bounding ellipsoid E(Q(tk)) for the state z(tk) for all tk, k = 1, . . . , N.

The gain matrix K of the controllers appears only in the difference equation (6). Let us repre-
sent (6) in the form

z(tk+1) = (Āz2 + B̄KC)z(tk) + Φz2ϕ(tk, z(tk)) +Dz2w(tk), tk ∈ Θ, (20)

where Āz2 =

⎡⎢⎢⎢⎢⎢⎣
I 0 0 0
0 A2 A21 B2

I 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎥⎦ , B̄ =

⎡⎢⎢⎢⎢⎢⎣
0 0
0 0
0 0

Im1 0
0 Im2

⎤⎥⎥⎥⎥⎥⎦ , C =

[
0 In2 0 0 0
0 0 In1 0 0

]
.

The following result is true.

Theorem 4. Assume that for some α1, β1, α2, β2 > 0 and all tk, k = 0, 1, . . . , N − 1, there exists
a solution Q(tk+1) > 0, Q(tk+1 − 0) = Q(tk + h) = Q(tk) + hZ(tk) > 0, Y (tk) of the problem

trace[Q(tk+1)] → min

subject to the constraints (12)–(14), (21), and (22):⎡⎢⎢⎢⎢⎢⎢⎢⎣

Q(tk+1)−β2Φz2Φ
T
z2 Āz2Q(tk)C

T+BYk Dz2 0

CQ(tk)Ā
T
z2+Y T

k B̄T α2CQ(tk)C
T 0 CQ(tk)C

T
2 C

T
f2

DT
z2 0 (1−α2)I 0

0 Cf2C2Q(tk)C
T 0

β2
μ2

I

⎤⎥⎥⎥⎥⎥⎥⎥⎦
� 0, (21)

(
U Yk

Y T
k CQ(tk)C

T

)
� 0, (22)
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where minimization is carried out with respect to the matrix variables Q(tk+1) ∈ Rn×n,
Yk ∈ Rm×(n2+n1), Z(tk) ∈ Rn×n and the scalar variables β1(tk) and β2(tk) > 0. Then the gain ma-
trix of the discrete state-feedback controller stabilizing the continuous-discrete system is given by
K(tk) = Yk(CQ(tk)C

T)−1. In this case, the stabilization errors are estimated by a bounding ellipsoid
for the state vector z(t), and the matrix Q(t) of this ellipsoid is given by (11).

Note that the matrix CQ(tk)C
T is positive definite since it represents the middle block of

dimensions (n2 + n1)× (n2 + n1) in the matrix Q(tk).

5. AN ILLUSTRATIVE EXAMPLE

Consider the continuous-discrete system (15) with nonlinearities ϕi(xi), i = 1, 2, from (2), dis-
turbances wi(t), i = 1, 2, from (3), and the parameters

A1 =

[
0 1
0 −5.04

]
, A12 =

[
0 0
1 0

]
, B1 =

[
0 0

1.36 0

]
,

Φ1 =

[
0

−1.87

]
, D1 =

[
0

−0.95

]
,

A2 =

[
0.5 0
1 1.25

]
, A21 =

[
1 0
0 0

]
, B2 =

[
0 0
0 −1

]
,

Φ2 =

[
0
−1

]
, D2 =

[
0
−1

]
,

μ1 = 1, μ2 = 0.5, Cf1 = Cf2 =
[
1 0

]
.

It is required to design a discrete controller ensuring finite stabilization with the maximum
sampling period h.

Based on Theorem 4 and the numerical solution of the corresponding set of optimization prob-
lems with LMI constraints, q1 = 0.03, q2 = 0.79, Q0 = diag{ 0.5 0.5 0.5 0.5 0.5 0.5 0 0 }, and
a sampling period of h = 2.5 s, we obtained the controller (16) with variable gains K(tk). Figure 1
shows these gains for the continuous and discrete subsystems on the horizon [0, 60] s.

The continuous-discrete system was simulated under the particular nonlinearities ϕ1(x1) =
sin(Cf1x1) and ϕ2(x2) = 0.7071 |Cf2x2|, which satisfy condition (2). The simulation results for

Fig. 1. The variable gains of the controller: (a) the continuous subsystem and (b) the discrete subsystem.
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Fig. 2. System state without the controller and disturbances: (a) the continuous subsystem
and (b) the discrete subsystem.

Fig. 3. System state without the disturbances: (a) the continuous subsystem and (b) the discrete subsystem.

Fig. 4. System state with the disturbances: (a) the continuous subsystem and (b) the discrete subsystem.

the system without the controller and disturbances with a sampling period of h = 2.5 s are pre-
sented in Fig. 2. According to the graphs, the system without the controller is unstable.

The continuous-discrete system with the resulting controller was simulated under different initial
conditions. Figure 3 shows the transients in the continuous and discrete subsystems with this con-

troller under the initial conditions x0 =
[
0.25 0 −0.5 1, 2

]T
without disturbances. Next, Fig. 4

demonstrates the transients in the continuous and discrete subsystems with this controller under
the same initial conditions and the disturbances given by the functions w1(t) = sin(2 cos(3t))/5 and
w2(tk) = sin(k)/10. In this case, the control signals of the continuous and discrete subsystems are
presented in Fig. 5.

AUTOMATION AND REMOTE CONTROL Vol. 86 No. 3 2025



200 MALIKOV

Fig. 5. The control signals of the continuous and discrete subsystems:
(a) without the disturbances and (b) with the disturbances.

Fig. 6. System state without the disturbances and with the initial conditions x0 = [ −0.4 0 0.4 0.2 ]T :
(a) the continuous subsystem and (b) the discrete subsystem.

Finally, Fig. 6 shows the states of the continuous and discrete subsystems obtained by simulation

under other initial conditions: x0 =
[
−0.4 0 0.4 0.2

]T
.

According to Figs. 3–6, the discrete controller designed stabilizes the continuous-discrete system
with a sampling period of h = 2.5 s.

6. CONCLUSIONS

This paper has been devoted to continuous-discrete systems with Lipschitz nonlinearities and
uncertain disturbances. We have proposed methods for solving two problems: state estimation via
bounding ellipsoids for the states of processes with initial data from a given ellipsoid and discrete
control design to attenuate initial deviations and uncertain disturbances. A quadratic Lyapunov
function with time-varying parameters has been used to obtain boundedness conditions on a finite
horizon in the form of the solvability of a constrained optimization problem with differential-
difference LMIs. With the piecewise linear approximation of the solution of the differential LMI, the
problems of state estimation and discrete control design have been reduced to a set of optimization
problems with LMIs, and semidefinite programming methods have been employed to solve them
numerically. The results have been applied to state estimation and discrete control design for
finite-horizon stabilization of a particular continuous-discrete system with uncertain disturbances.
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APPENDIX

Proof of Theorem 4. In the case of periodic discrete control (hk = h= const> 0, see Section 3), state
estimation via a bounding ellipsoid reduces to a set of optimization problems trace(Q(tk+1))→min
subject to the LMIs (10), (12)–(14) for all k = 0, . . . , N − 1. In view of (20), the matrix inequal-
ity (10) here takes the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Q(tk+1)− β2Φz2Φ
T
z2 (Āz2 + B̄KC)Q(tk) Dz2 0

Q(tk)(Āz2 + B̄KC)T α2Q(tk) 0 Q(tk)C
T
2 C

T
f2

DT
z2 0 (1− α2)I 0

0 Cf2C2Q(tk) 0
β2
μ2

I

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
� 0.

Then, multiplying the last inequality by the matrices diag(I, C, I, I) and diag(I, CT, I, I) on
the left and right, respectively, and introducing the change of variables Yk = KCQ(tk)C

T, we
arrive at the difference LMI (21) with respect to the matrix variables Q(tk+1) and Yk. The control
constraint (17) is ensured by the LMI (22), where U = diag(U1, U2).

The proof of Theorem 4 is complete.
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